Building an ENSO tracker with Matplotlib

In this post, I will show how to play with matplotlib's patches to create a gauge or meter, the goal will be to get something like the Australian Bureau of Meteorology's ENSO tracker below


imports

In [1]:
%matplotlib inline
In [2]:
import os, sys
import matplotlib
from matplotlib import cm
from matplotlib import pyplot as plt
import numpy as np


Looking at the BoM ENSO tracker above, it looks like we can build our tracker using a mix of circles, wedges and rectangles, we will also need an arrow, and for that we will use the arrow function of the matplotlib.pyplot.


A good place to start to have a feel of what you can do with matplotlib patches is the patch collection example code on matplotlib's website.


To dig more into each of the individual patches, head to the relevant section of the documentation on matplotlib.patches

In [3]:
from matplotlib.patches import Circle, Wedge, Rectangle

some function definitions

below some functions to deal with some basic trigonometry that we'll be using to draw the wedges (i.e. the sectors of the gauge) and to point the arrow to the right sector

In [4]:
def degree_range(n): 
    start = np.linspace(0,180,n+1, endpoint=True)[0:-1]
    end = np.linspace(0,180,n+1, endpoint=True)[1::]
    mid_points = start + ((end-start)/2.)
    return np.c_[start, end], mid_points
In [5]:
def rot_text(ang): 
    rotation = np.degrees(np.radians(ang) * np.pi / np.pi - np.radians(90))
    return rotation


main gauge function

In [6]:
def gauge(labels=['LOW','MEDIUM','HIGH','VERY HIGH','EXTREME'], \
          colors='jet_r', arrow=1, title='', fname=False): 
    
    """
    some sanity checks first
    
    """
    
    N = len(labels)
    
    if arrow > N: 
        raise Exception("\n\nThe category ({}) is greated than \
        the length\nof the labels ({})".format(arrow, N))
 
    
    """
    if colors is a string, we assume it's a matplotlib colormap
    and we discretize in N discrete colors 
    """
    
    if isinstance(colors, str):
        cmap = cm.get_cmap(colors, N)
        cmap = cmap(np.arange(N))
        colors = cmap[::-1,:].tolist()
    if isinstance(colors, list): 
        if len(colors) == N:
            colors = colors[::-1]
        else: 
            raise Exception("\n\nnumber of colors {} not equal \
            to number of categories{}\n".format(len(colors), N))

    """
    begins the plotting
    """
    
    fig, ax = plt.subplots()

    ang_range, mid_points = degree_range(N)

    labels = labels[::-1]
    
    """
    plots the sectors and the arcs
    """
    patches = []
    for ang, c in zip(ang_range, colors): 
        # sectors
        patches.append(Wedge((0.,0.), .4, *ang, facecolor='w', lw=1, edgecolor='k'))
        # arcs
        patches.append(Wedge((0.,0.), .4, *ang, width=0.10, facecolor=c, lw=1, edgecolor='k', alpha=0.9))
    
    [ax.add_patch(p) for p in patches]

    
    """
    set the labels (e.g. 'LOW','MEDIUM',...)
    """

    for mid, lab in zip(mid_points, labels): 

        ax.text(0.35 * np.cos(np.radians(mid)), 0.35 * np.sin(np.radians(mid)), lab, \
            horizontalalignment='center', verticalalignment='center', fontsize=14, \
            fontweight='bold', rotation = rot_text(mid))

    """
    set the bottom banner and the title
    """
    r = Rectangle((-0.4,-0.1),0.8,0.1, facecolor='w', lw=1, edgecolor='k')
    
    ax.add_patch(r)
    
    ax.text(0, -0.05, title, horizontalalignment='center', \
         verticalalignment='center', fontsize=22, fontweight='bold')

    """
    plots the arrow now
    """
    
    pos = mid_points[abs(arrow - N)]
    
    ax.arrow(0, 0, 0.225 * np.cos(np.radians(pos)), 0.225 * np.sin(np.radians(pos)), \
                 width=0.04, head_width=0.09, head_length=0.1, fc='k', ec='k')
    
    ax.add_patch(Circle((0, 0), radius=0.02, facecolor='k'))
    ax.add_patch(Circle((0, 0), radius=0.01, facecolor='w', zorder=11))

    """
    removes frame and ticks, and makes axis equal and tight
    """
    
    ax.set_frame_on(False)
    ax.axes.set_xticks([])
    ax.axes.set_yticks([])
    ax.axis('equal')
    plt.tight_layout()
    if fname:
        fig.savefig(fname, dpi=200)

testing


let's test our brand new gauge function now, using a few different colormaps


with a list of pre-defined colors

In [7]:
gauge(labels=['LOW','MEDIUM','HIGH','EXTREME'], \
      colors=['#007A00','#0063BF','#FFCC00','#ED1C24'], arrow=3, title='something here') 


using 6 instead of 5 categories, and a linear colormap

In [8]:
gauge(labels=['LOW','MEDIUM','HIGH','VERY HIGH','EXTREME','CRITICAL'], \
      colors='YlOrRd_r', arrow=3, title='drought severity index') 


and finally our ENSO tracker

In [9]:
gauge(labels=['La Nina','Alert','Watch','Neutral','Watch','Alert','El Nino'], \
      colors='RdBu', arrow=7, title='NIWA ENSO TRACKER')

Comments