Wavelet analysis with Python

This Jupyter notebook implements Dr. Toru Miyama's Python code for univariate Wavelet analysis.

The following is inspired from his IPython notebook available at:

https://github.com/tmiyama/WaveletAnalysis/blob/main/wavelet_test_ElNino3_Liu.ipynb

See also:

https://github.com/tmiyama/WaveletAnalysis/blob/main/wavelet_test_sine.ipynb

References:

imports

In [1]:
%load_ext autoreload
%autoreload 2
In [2]:
%matplotlib inline
import numpy as np 
from matplotlib import pyplot as plt

load the wavelib module

In [3]:
import sys
In [4]:
sys.path.append('.')
In [5]:
from wavelib import *

loads the data

In [6]:
data = np.loadtxt('/home/nicolasf/data/sst_nino3.dat')
In [7]:
data.shape
Out[7]:
(504,)
In [8]:
N = data.size

set up some parameters

In [9]:
t0=1871
dt=0.25
units='^{\circ}C'
label='NINO3 SST'
In [10]:
time = np.arange(0, N) * dt + t0

plot the raw time-series

In [11]:
f, ax = plt.subplots()
ax.plot(time,data)
xlim = [1870,2000]  # plotting range
ax.set_xlim(xlim)
Out[11]:
(1870.0, 2000.0)

calculate variance, mean and standardize the time-series

In [12]:
variance = np.std(data)**2
mean=np.mean(data)
data = (data - np.mean(data))/np.sqrt(variance)
print("mean=",mean)
print("std=", np.sqrt(variance))
mean= -1.984126984127118e-05
std= 0.7335991128242201

set wavelet parameters

In [13]:
pad = 1      # pad the time series with zeroes (recommended)
dj = 0.25    # this will do 4 sub-octaves per octave
s0 = 2.*dt    # this says start at a scale of 6 months
j1 = 7./dj    # this says do 7 powers-of-two with dj sub-octaves each
lag1 = 0.72  # lag-1 autocorrelation for red noise background
mother = 'Morlet'

wavelet transform

In [14]:
wave,period,scale,coi = wavelet(data,dt,pad,dj,s0,j1,mother);
power = (np.abs(wave))**2         # compute wavelet power spectrum

significance levels

In [15]:
signif,fft_theor = wave_signif(1.0,dt,scale,0,lag1,-1,-1,mother)
In [16]:
sig95 = np.dot(signif.reshape(len(signif),1),np.ones((1,N))) # expand signif --> (J+1)x(N) array
In [17]:
sig95 = power / sig95         # where ratio > 1, power is significant
In [18]:
global_ws = variance*power.sum(axis=1)/float(N)   # time-average over all times
In [19]:
dof = N - scale  # the -scale corrects for padding at edges
In [20]:
global_signif,fft_theor = wave_signif(variance,dt,scale,1,lag1,-1,dof,mother)

scale-average between 2 and 8 years

In [21]:
avg = (scale >= 2) & (scale < 8)
Cdelta = 0.776;   # this is for the MORLET wavelet
scale_avg = np.dot(scale.reshape(len(scale),1),np.ones((1,N))) # expand scale --> (J+1)x(N) array
scale_avg = power / scale_avg   # [Eqn(24)]
scale_avg = variance*dj*dt/Cdelta*sum(scale_avg[avg,:])   # [Eqn(24)]
scaleavg_signif ,fft_theor= wave_signif(variance,dt,scale,2,lag1,-1,[2,7.9],mother)
In [22]:
iwave=wavelet_inverse(wave, scale, dt, dj, "Morlet")
print("root square mean error",np.sqrt(np.sum((data-iwave)**2)/float(len(data)))*np.sqrt(variance),"deg C")
root square mean error 0.07755811016771955 deg C

Bias rectification

divides by scales

In [23]:
########################
#  Spectrum
########################
powers=np.zeros_like(power)
for k in range(len(scale)):
    powers[k,:] = power[k,:]/scale[k]
#significance: sig95 is already normalized = 1

########################
#  Spectrum
########################
global_wss = global_ws/scale   
global_signifs=global_signif/scale

########################
#  Scale-average between El Nino periods of 2--8 years
########################
# No need to change 
# because in Eqn(24) of Torrence and Compo [1998], division by scale has been done.
scale_avgs=scale_avg
scaleavg_signifs=scaleavg_signif
In [24]:
#figure size
fig=plt.figure(figsize=(10,10))

# subplot positions
width= 0.65
hight = 0.28;
pos1a = [0.1, 0.75, width, 0.2]
pos1b = [0.1, 0.37, width, hight]
pos1c = [0.79, 0.37, 0.18, hight]
pos1d = [0.1,  0.07, width, 0.2]

#########################################
#---- a) Original signal
#########################################
ax=fig.add_axes(pos1a)
#original
ax.plot(time,data*np.sqrt(variance)+mean,"r-")
#reconstruction
ax.plot(time,iwave*np.sqrt(variance)+mean,"k--")

ax.set_ylabel('NINO3 SST (degC)')
plt.title('a) NINO3 Sea Surface Temperature (seasonal)')

#########################################
#   b) Wavelet spectrum
#########################################

#--- Contour plot wavelet power spectrum
bx=fig.add_axes(pos1b,sharex=ax)
levels = [0.0625,0.125,0.25,0.5,1,2,4,8,16] 
Yticks = 2**(np.arange(int(np.log2(np.min(period))),int(np.log2(np.max(period)))+1))
bx.contour(time,np.log2(period),np.log2(powers),np.log2(levels))
bx.contourf(time,np.log2(period),np.log2(powers),np.log2(levels), extend='both', cmap=plt.get_cmap('rainbow'))
bx.set_xlabel('Time (year)')
bx.set_ylabel('Period (years)')
import matplotlib.ticker as ticker
ymajorLocator=ticker.FixedLocator(np.log2(Yticks))
bx.yaxis.set_major_locator( ymajorLocator )
ticks=bx.yaxis.set_ticklabels(Yticks)
plt.title('b) Wavelet Power Spectrum')

# 95% significance contour, levels at -99 (fake) and 1 (95% signif)
cs = bx.contour(time,np.log2(period),sig95,[1])

# cone-of-influence, anything "below" is dubious
ts = time;
coi_area = np.concatenate([[np.max(scale)], coi, [np.max(scale)],[np.max(scale)]])
ts_area = np.concatenate([[ts[0]], ts, [ts[-1]] ,[ts[0]]]);
L = bx.plot(ts_area,np.log2(coi_area),'k',linewidth=3)
F=bx.fill(ts_area,np.log2(coi_area),'k',alpha=0.3,hatch="x")

#########################################
#   c) Global Wavelet spectrum
#########################################

#--- Plot global wavelet spectrum
cx=fig.add_axes(pos1c,sharey=bx)
cx.plot(global_wss,np.log2(period),"r-")
cx.plot(global_signifs,np.log2(period),'k--')
ylim=cx.set_ylim(np.log2([period.min(),period.max()]))
cx.invert_yaxis()
plt.title('c) Global Wavelet Spectrum')
xrangec=cx.set_xlim([0,1.25*np.max(global_wss)])

#########################################
#   d) Global Wavelet spectrum
#########################################
#--- Plot Scale-averaged spectrum -----------------
dx=fig.add_axes(pos1d,sharex=bx)
dx.plot(time,scale_avgs,"r-")
dx.plot([time[0],time[-1]],[scaleavg_signifs,scaleavg_signifs],"k--")
xrange=dx.set_xlim(xlim)
dx.set_ylabel('Avg variance (degC$^2$)')
title=plt.title('d) Scale-average Time Series')
In [25]:
!cat ./wavelib.py
# wavelet library

def wavelet(Y,dt,pad=0.,dj=0.25,s0=-1,J1=-1,mother="MORLET",param=-1):
    """
This function is the translation of wavelet.m by Torrence and Compo

import wave_bases from wave_bases.py

The following is the original comment in wavelet.m

#WAVELET  1D Wavelet transform with optional singificance testing
%
%   [WAVE,PERIOD,SCALE,COI] = wavelet(Y,DT,PAD,DJ,S0,J1,MOTHER,PARAM)
%
%   Computes the wavelet transform of the vector Y (length N),
%   with sampling rate DT.
%
%   By default, the Morlet wavelet (k0=6) is used.
%   The wavelet basis is normalized to have total energy=1 at all scales.
%
%
% INPUTS:
%
%    Y = the time series of length N.
%    DT = amount of time between each Y value, i.e. the sampling time.
%
% OUTPUTS:
%
%    WAVE is the WAVELET transform of Y. This is a complex array
%    of dimensions (N,J1+1). FLOAT(WAVE) gives the WAVELET amplitude,
%    ATAN(IMAGINARY(WAVE),FLOAT(WAVE) gives the WAVELET phase.
%    The WAVELET power spectrum is ABS(WAVE)^2.
%    Its units are sigma^2 (the time series variance).
%
%
% OPTIONAL INPUTS:
% 
% *** Note *** setting any of the following to -1 will cause the default
%               value to be used.
%
%    PAD = if set to 1 (default is 0), pad time series with enough zeroes to get
%         N up to the next higher power of 2. This prevents wraparound
%         from the end of the time series to the beginning, and also
%         speeds up the FFT's used to do the wavelet transform.
%         This will not eliminate all edge effects (see COI below).
%
%    DJ = the spacing between discrete scales. Default is 0.25.
%         A smaller # will give better scale resolution, but be slower to plot.
%
%    S0 = the smallest scale of the wavelet.  Default is 2*DT.
%
%    J1 = the # of scales minus one. Scales range from S0 up to S0*2^(J1*DJ),
%        to give a total of (J1+1) scales. Default is J1 = (LOG2(N DT/S0))/DJ.
%
%    MOTHER = the mother wavelet function.
%             The choices are 'MORLET', 'PAUL', or 'DOG'
%
%    PARAM = the mother wavelet parameter.
%            For 'MORLET' this is k0 (wavenumber), default is 6.
%            For 'PAUL' this is m (order), default is 4.
%            For 'DOG' this is m (m-th derivative), default is 2.
%
%
% OPTIONAL OUTPUTS:
%
%    PERIOD = the vector of "Fourier" periods (in time units) that corresponds
%           to the SCALEs.
%
%    SCALE = the vector of scale indices, given by S0*2^(j*DJ), j=0...J1
%            where J1+1 is the total # of scales.
%
%    COI = if specified, then return the Cone-of-Influence, which is a vector
%        of N points that contains the maximum period of useful information
%        at that particular time.
%        Periods greater than this are subject to edge effects.
%        This can be used to plot COI lines on a contour plot by doing:
%
%              contour(time,log(period),log(power))
%              plot(time,log(coi),'k')
%
%----------------------------------------------------------------------------
%   Copyright (C) 1995-2004, Christopher Torrence and Gilbert P. Compo
%
%   This software may be used, copied, or redistributed as long as it is not
%   sold and this copyright notice is reproduced on each copy made. This
%   routine is provided as is without any express or implied warranties
%   whatsoever.
%
% Notice: Please acknowledge the use of the above software in any publications:
%    ``Wavelet software was provided by C. Torrence and G. Compo,
%      and is available at URL: http://paos.colorado.edu/research/wavelets/''.
%
% Reference: Torrence, C. and G. P. Compo, 1998: A Practical Guide to
%            Wavelet Analysis. <I>Bull. Amer. Meteor. Soc.</I>, 79, 61-78.
%
% Please send a copy of such publications to either C. Torrence or G. Compo:
%  Dr. Christopher Torrence               Dr. Gilbert P. Compo
%  Research Systems, Inc.                 Climate Diagnostics Center
%  4990 Pearl East Circle                 325 Broadway R/CDC1
%  Boulder, CO 80301, USA                 Boulder, CO 80305-3328, USA
%  E-mail: chris[AT]rsinc[DOT]com         E-mail: compo[AT]colorado[DOT]edu
%----------------------------------------------------------------------------"""  
    #modules
    import numpy as np
    
    #set default
    n1 = len(Y)
    if (s0 == -1): s0=2.*dt
    if (dj == -1): dj = 1./4.
    if (J1 == -1): J1=np.fix((np.log(n1*dt/s0)/np.log(2))/dj)
    if (mother == -1): mother = 'MORLET'
    #print "s0=",s0
    #print "J1=",J1

    #....construct time series to analyze, pad if necessary
    x = Y - np.mean(Y);
    if (pad == 1):
        base2 = np.fix(np.log(n1)/np.log(2) + 0.4999)   # power of 2 nearest to N
        temp=np.zeros((int(2**(base2+1)-n1),))
        x=np.concatenate((x,temp))
    
    n = len(x)

    #....construct wavenumber array used in transform [Eqn(5)]
    k = np.arange(1,np.fix(n/2)+1)
    k = k*(2.*np.pi)/(n*dt)
    k = np.concatenate((np.zeros((1,)),k, -k[-2::-1]));

    #....compute FFT of the (padded) time series
    f = np.fft.fft(x)    # [Eqn(3)]
    
    #....construct SCALE array & empty PERIOD & WAVE arrays
    scale=np.array([s0*2**(i*dj) for i in range(0,int(J1)+1)])
    period = scale.copy()
    wave = np.zeros((int(J1)+1,n),dtype=np.complex)  # define the wavelet array  # make it complex
    # loop through all scales and compute transform
    for a1 in range(0,int(J1)+1):
        daughter,fourier_factor,coi,dofmin=wave_bases(mother,k,scale[a1],param)
        wave[a1,:] = np.fft.ifft(f*daughter)  # wavelet transform[Eqn(4)]
    period = fourier_factor*scale
    coi=coi*dt*np.concatenate(([1.E-5],np.arange(1.,(n1+1.)/2.-1),np.flipud(np.arange(1,n1/2.)),[1.E-5])) # COI [Sec.3g]
    wave = wave[:,:n1]  # get rid of padding before returning
    return wave,period,scale,coi
    # end of code

def wave_bases(mother,k,scale,param):
    """
    This is translation of wave_bases.m by Torrence and Gilbert P. Compo
 
    The folloing is the original README
 
%    WAVE_BASES  1D Wavelet functions Morlet, Paul, or DOG
%
%  [DAUGHTER,FOURIER_FACTOR,COI,DOFMIN] = ...
%      wave_bases(MOTHER,K,SCALE,PARAM);
%
%   Computes the wavelet function as a function of Fourier frequency,
%   used for the wavelet transform in Fourier space.
%   (This program is called automatically by WAVELET)
%
% INPUTS:
%
%    MOTHER = a string, equal to 'MORLET' or 'PAUL' or 'DOG'
%    K = a vector, the Fourier frequencies at which to calculate the wavelet
%    SCALE = a number, the wavelet scale
%    PARAM = the nondimensional parameter for the wavelet function
%
% OUTPUTS:
%
%    DAUGHTER = a vector, the wavelet function
%    FOURIER_FACTOR = the ratio of Fourier period to scale
%    COI = a number, the cone-of-influence size at the scale
%    DOFMIN = a number, degrees of freedom for each point in the wavelet power
%             (either 2 for Morlet and Paul, or 1 for the DOG)
%
%----------------------------------------------------------------------------
%   Copyright (C) 1995-1998, Christopher Torrence and Gilbert P. Compo
%   University of Colorado, Program in Atmospheric and Oceanic Sciences.
%   This software may be used, copied, or redistributed as long as it is not
%   sold and this copyright notice is reproduced on each copy made.  This
%   routine is provided as is without any express or implied warranties
%   whatsoever.
%----------------------------------------------------------------------------
    """
    #import modules
    import numpy as np

    #
    mother = mother.upper()
    n = len(k)
    # define Heaviside step function
    def ksign(x):
        y=np.zeros_like(x)
        y[x>0]=1
        return y
    #
    if mother=='MORLET':  #-----------------------------------  Morlet
        if (param == -1): param = 6.
        k0 = param
        expnt = -(scale*k - k0)**2/2. *ksign(k)
        norm = np.sqrt(scale*k[1])*(np.pi**(-0.25))*np.sqrt(n)    # total energy=N   [Eqn(7)]
        daughter = norm*np.exp(expnt)
        daughter = daughter*ksign(k)  # Heaviside step function
        fourier_factor = (4.*np.pi)/(k0 + np.sqrt(2. + k0**2)) # Scale-->Fourier [Sec.3h]
        coi = fourier_factor/np.sqrt(2)            # Cone-of-influence [Sec.3g]
        dofmin = 2.                          # Degrees of freedom
    elif mother=='PAUL': #--------------------------------  Paul
        if (param == -1): param = 4.
        m = param
        expnt = -(scale*k)*ksign(k)
        norm = np.sqrt(scale*k[1])*(2.**m/np.sqrt(m*np.prod(np.arange(2,2*m))))*np.sqrt(n)
        daughter = norm*((scale*k)**m)*np.exp(expnt)
        daughter = daughter*ksign(k)      # Heaviside step function
        fourier_factor = 4*np.pi/(2.*m+1.)
        coi = fourier_factor*np.sqrt(2)
        dofmin = 2.
    elif mother=='DOG':  #--------------------------------  DOG
        if (param == -1): param = 2.
        m = param
        expnt = -(scale*k)**2 / 2.0
        from scipy.special import gamma 
        norm = np.sqrt(scale*k[1]/gamma(m+0.5))*np.sqrt(n)
        daughter = -norm*(1j**m)*((scale*k)**m)*np.exp(expnt);
        fourier_factor = 2.*np.pi*np.sqrt(2./(2.*m+1.))
        coi = fourier_factor/np.sqrt(2)
        dofmin = 1.
    else:
        raise Exception("Mother must be one of MORLET,PAUL,DOG")


    return daughter,fourier_factor,coi,dofmin 

    # end of code

def wave_signif(Y,dt,scale1,sigtest=-1,lag1=-1,siglvl=-1,dof=-1,mother=-1,param=-1):
    """
This function is the translation of wave_signif.m by Torrence and Compo
use scipy function "chi2" instead of  chisquare_inv

The following is the original comment in wave_signif.m

%WAVE_SIGNIF  Significance testing for the 1D Wavelet transform WAVELET
%
%   [SIGNIF,FFT_THEOR] = ...
%      wave_signif(Y,DT,SCALE,SIGTEST,LAG1,SIGLVL,DOF,MOTHER,PARAM)
%
% INPUTS:
%
%    Y = the time series, or, the VARIANCE of the time series.
%        (If this is a single number, it is assumed to be the variance...)
%    DT = amount of time between each Y value, i.e. the sampling time.
%    SCALE = the vector of scale indices, from previous call to WAVELET.
%
%
% OUTPUTS:
%
%    SIGNIF = significance levels as a function of SCALE
%    FFT_THEOR = output theoretical red-noise spectrum as fn of PERIOD
%
%
% OPTIONAL INPUTS:
% *** Note *** setting any of the following to -1 will cause the default
%               value to be used.
%
%    SIGTEST = 0, 1, or 2.    If omitted, then assume 0.
%
%         If 0 (the default), then just do a regular chi-square test,
%             i.e. Eqn (18) from Torrence & Compo.
%         If 1, then do a "time-average" test, i.e. Eqn (23).
%             In this case, DOF should be set to NA, the number
%             of local wavelet spectra that were averaged together.
%             For the Global Wavelet Spectrum, this would be NA=N,
%             where N is the number of points in your time series.
%         If 2, then do a "scale-average" test, i.e. Eqns (25)-(28).
%             In this case, DOF should be set to a
%             two-element vector [S1,S2], which gives the scale
%             range that was averaged together.
%             e.g. if one scale-averaged scales between 2 and 8,
%             then DOF=[2,8].
%
%    LAG1 = LAG 1 Autocorrelation, used for SIGNIF levels. Default is 0.0
%
%    SIGLVL = significance level to use. Default is 0.95
%
%    DOF = degrees-of-freedom for signif test.
%         IF SIGTEST=0, then (automatically) DOF = 2 (or 1 for MOTHER='DOG')
%         IF SIGTEST=1, then DOF = NA, the number of times averaged together.
%         IF SIGTEST=2, then DOF = [S1,S2], the range of scales averaged.
%
%       Note: IF SIGTEST=1, then DOF can be a vector (same length as SCALEs),
%            in which case NA is assumed to vary with SCALE.
%            This allows one to average different numbers of times
%            together at different scales, or to take into account
%            things like the Cone of Influence.
%            See discussion following Eqn (23) in Torrence & Compo.
%
%
%----------------------------------------------------------------------------
%   Copyright (C) 1995-1998, Christopher Torrence and Gilbert P. Compo
%   University of Colorado, Program in Atmospheric and Oceanic Sciences.
%   This software may be used, copied, or redistributed as long as it is not
%   sold and this copyright notice is reproduced on each copy made.  This
%   routine is provided as is without any express or implied warranties
%   whatsoever.
%----------------------------------------------------------------------------
    """
    from scipy.stats import chi2
    import numpy as np

    try:
        n1=len(Y)
    except:
        n1=1
    J1 = len(scale1) - 1
    scale = scale1
    s0 = np.min(scale)
    dj = np.log(scale[1]/scale[0])/np.log(2.)
    

    if (n1 == 1):
        variance = Y
    else:
        variance = np.std(Y)**2

    if (sigtest == -1): sigtest = 0
    if (lag1 == -1): lag1 = 0.0
    if (siglvl == -1): siglvl = 0.95
    if (mother == -1): mother = 'MORLET'

    mother = mother.upper()

    # get the appropriate parameters [see Table(2)]
    if (mother=='MORLET'):  #----------------------------------  Morlet
        if (param == -1): param = 6.
        k0 = param
        fourier_factor = (4.*np.pi)/(k0 + np.sqrt(2. + k0**2)) # Scale-->Fourier [Sec.3h]
        empir = [2.,-1,-1,-1]
        if (k0 == 6): empir[1:4]=[0.776,2.32,0.60]    
    elif (mother=='PAUL'):  #--------------------------------  Paul
        if (param == -1): param = 4.
        m = param
        fourier_factor = 4.*np.pi/(2.*m+1.)
        empir = [2.,-1,-1,-1]
        if (m == 4): empir[1:4]=[1.132,1.17,1.5] 
    elif (mother=='DOG'):  #---------------------------------  DOG
        if (param == -1): param = 2.
        m = param
        fourier_factor = 2.*np.pi*np.sqrt(2./(2.*m+1.))
        empir = [1.,-1,-1,-1]
        if (m == 2): empir[1:4] = [3.541,1.43,1.4]
        if (m == 6): empir[1:4] = [1.966,1.37,0.97]
    else:
        raise Exception("Mother must be one of MORLET,PAUL,DOG")

    period = scale*fourier_factor
    dofmin = empir[0]     # Degrees of freedom with no smoothing
    Cdelta = empir[1]     # reconstruction factor
    gamma_fac = empir[2]  # time-decorrelation factor
    dj0 = empir[3]        # scale-decorrelation factor

    freq = dt / period   # normalized frequency
    fft_theor = (1.-lag1**2) / (1.-2.*lag1*np.cos(freq*2.*np.pi)+lag1**2)  # [Eqn(16)]
    fft_theor = variance*fft_theor  # include time-series variance
    signif = fft_theor
    try:
        test=len(dof)
    except:
        if (dof == -1):
            dof = dofmin
        else:
            pass
    #
    if (sigtest == 0):    # no smoothing, DOF=dofmin [Sec.4]
        dof = dofmin
        chisquare = chi2.ppf(siglvl,dof)/dof
        signif = fft_theor*chisquare   # [Eqn(18)]
    elif (sigtest == 1):  # time-averaged significance
        try: 
            test=len(dof)
        except:
            dof=np.zeros((J1+1,))+dof
        truncate = dof < 1
        dof[truncate] = 1.
        dof = dofmin*np.sqrt(1. + (dof*dt/gamma_fac / scale)**2 )   # [Eqn(23)]
        truncate = dof < dofmin
        dof[truncate] = dofmin   # minimum DOF is dofmin
        for a1 in range(J1+1):
            chisquare = chi2.ppf(siglvl,dof[a1])/dof[a1]
            signif[a1] = fft_theor[a1]*chisquare
    elif (sigtest == 2):  # time-averaged significance
        if not (len(dof) == 2):
            raise Exception("DOF must be set to [S1,S2], the range of scale-averages'")
        if (Cdelta == -1):
            raise Exception('Cdelta & dj0 not defined for '+mother+' with param = '+str(param))
        s1 = dof[0];
        s2 = dof[1];
        avg = (scale >= s1) & (scale <= s2)  # scales between S1 & S2
        navg=np.sum(avg)
        if navg==0:
            raise Exception('No valid scales between '+str(s1)+' and '+str(s2))
        Savg = 1./np.sum(1 / scale[avg])    # [Eqn(25)]
        Smid = np.exp((np.log(s1)+np.log(s2))/2.)     # power-of-two midpoint
        dof = (dofmin*navg*Savg/Smid)*np.sqrt(1. + (navg*dj/dj0)**2)  # [Eqn(28)]
        fft_theor = Savg*np.sum(fft_theor[avg] / scale[avg])  # [Eqn(27)]#
        chisquare = chi2.ppf(siglvl,dof)/dof
        signif = (dj*dt/Cdelta/Savg)*fft_theor*chisquare    # [Eqn(26)]
    else:
        raise Exception('sigtest must be either 0, 1, or 2')

    return signif,fft_theor

# end of code

def wavelet_inverse(wave, scale, dt, dj=0.25, mother="MORLET",param=-1):
    """Inverse continuous wavelet transform
    Torrence and Compo (1998), eq. (11)

    INPUTS
        waves (array like):
          WAVE is the WAVELET transform. This is a complex array.
          
        scale (array like):
           the vector of scale indices 
        dt (float) :
            amount of time between each original value, i.e. the sampling time.
        dj (float, optional) :
            the spacing between discrete scales. Default is 0.25.
           A smaller # will give better scale resolution, but be slower to plot.
        mother (string, optional) :
            the mother wavelet function.
             The choices are 'MORLET', 'PAUL', or 'DOG'
         PARAM = the mother wavelet parameter.
            For 'MORLET' this is k0 (wavenumber), default is 6.
            For 'PAUL' this is m (order), default is 4.
            For 'DOG' this is m (m-th derivative), default is 2.    

    OUTPUTS
        iwave (array like) :
            Inverse wavelet transform.
    """
    import numpy as np
    
    j1, n = wave.shape
    J1 = len(scale)
    if not j1 == J1:
        print(j1,n,J1)
        raise Exception("Input array are inconsistent")
    sj = np.dot(scale.reshape(len(scale),1),np.ones((1,n)))
    #
    mother = mother.upper()
    
    # psi0 comes from Table 1,2 Torrence and Compo (1998)
    # Cdelta comes from Table 2 Torrence and Compo (1998)
    if mother=='MORLET':  #-----------------------------------  Morlet
        if (param == -1): param = 6.
        psi0=np.pi**(-0.25)
        if param==6.:
            Cdelta = 0.776
    elif mother=='PAUL': #--------------------------------  Paul
        if (param == -1): param = 4.
        m = param   
        psi0=np.real(2.**m*1j**m*np.prod(np.arange(2, m + 1))/np.sqrt(np.pi*np.prod(np.arange(2,2*m+1)))*(1**(-(m+1))))
        if m==4.:
           Cdelta = 1.132 
    elif mother=='DOG':  #--------------------------------  DOG
        if (param == -1): param = 2.
        m = param
        from scipy.special import gamma 
        from numpy.lib.polynomial import polyval
        from scipy.special.orthogonal import hermitenorm
        p = hermitenorm(m)
        psi0=(-1)**(m+1)/np.sqrt(gamma(m+0.5))*polyval(p, 0)
        print(psi0)
        if m==2.:
            Cdelta=3.541
        if m==6.:
            Cdelta=1.966
    else:
        raise Exception("Mother must be one of MORLET,PAUL,DOG")
    
    #eq. (11) in Torrence and Compo (1998)
    iwave = dj * np.sqrt(dt) / Cdelta /psi0 * (np.real(wave) / sj**0.5).sum(axis=0) 
    return iwave

In [ ]:
 
In [ ]:
 

Comments